This article was downloaded by: On: *28 January 2011* Access details: *Access Details: Free Access* Publisher *Taylor & Francis* Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Physics and Chemistry of Liquids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713646857

Absorption Spectra Of Nd(NO,),6H,O Alcoholic Complexes

S. Buddhudu^a; V. Ramesh Babu^a; A. Suresh Kumar^b ^a Spectroscopic Laboratories, Department of Physics, ^b University Science Instrumentation Centre, S. V. University, Tirupati, India

To cite this Article Buddhudu, S. , Babu, V. Ramesh and Kumar, A. Suresh (1989) 'Absorption Spectra Of Nd(NO₃)₃6H₂O Alcoholic Complexes', Physics and Chemistry of Liquids, 20: 1, 17 – 29

To link to this Article: DOI: 10.1080/00319108908031696 URL: http://dx.doi.org/10.1080/00319108908031696

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Phys. Chem. Liq., 1989, Vol. 20, pp. 17-29 Reprints available directly from the publisher Photocopying permitted by license only

ABSORPTION SPECTRA OF Nd(NO₃)₃6H₂O ALCOHOLIC COMPLEXES

S. BUDDHUDU*, V. RAMESH BABU* and A. SURESH KUMAR**

* Spectroscopic Laboratories, Department of Physics and ** University Science Instrumentation Centre,

S. V. University, Tirupati, 517 502, India.

(Received 15 November 1988)

Band intensities and energies of Nd³⁺ ion in methyl, ethyl, isopropyl, butyl and amyl alcohols are studied. The lifetimes (τ_R) for certain fluorescing states of Nd³⁺ ion in all the five alcohols are reported. The second derivative spectra exhibited splittings for certain states of Nd³⁺ in five alcohols.

KEYWORDS: Neodymium complexes, band intensities.

1 INTRODUCTION

Vibrational spectra of polynuclear complexes of lanthanide nitrates have been analysed by Seminara¹. Interligands charge transfer in lanthanide complexes have been characteristed by Choppin². Bunzli³ has made a detailed study on the solvation of Nd³⁺ in various organic solvents. Magnetic properties of rare earth complexes have been studied by Urland⁴. Thermodynamic properties of Nd(NO₃)₃6H₂O in KNO₃ have been investigated by Shevchu⁵. Vicentini and his coworkers have reported the lanthanide adducts spectra with several organic solvents⁶⁻⁸.

2 EXPERIMENTAL

The neodymium complexes were prepared by putting about 0.1 m% neodymium nitrate into the alcohols of methyl, ethyl, isopropyl, butyl and amyl. These five neodymium complexes have been used for recording the spectra. The UV-VIS spectra have been recorded from 920-320 nm on the UV-VIS spectrophotometer. In the same wavelength range, the second derivative spectra have also been recorded to obtain further clearer information about the energy-level stucture. The measurement of refractive indices of these complexes have been made on a standard refractometer. By

using a microcomputer (DCM Spectrum 31) theoretical evaluation of spectral characteristic parameters has been carried out.

3 RESULTS AND DISCUSSION

3.1 Band Energies

The spectral appearance of the Nd³⁺ in five different alcohols namely methyl(MA), ethyl(EA), isopropyl(IPA) butyl(BA) and amyl(AA) alcohols have revealed the presence of ten electronic states with ${}^{4}I_{9/2}$ as the ground state. They are as follows:

$${}^{4}I_{9/2} \rightarrow {}^{4}F_{3/2}, {}^{4}F_{5/2}, {}^{4}F_{7/2} \text{ and } {}^{4}F_{9/2}$$

 $\rightarrow {}^{2}H_{11/2}$
 $\rightarrow {}^{4}G_{5/2}, {}^{4}G_{7/2} \text{ and } {}^{4}G_{9/2}$
 $\rightarrow {}^{2}D_{3/2}$
 $\rightarrow {}^{4}D_{3/2}$

The experimental energies of these bands relating to the Nd^{3+} ion in five alcohols are presented in Table 1. The theoretical energies of these ten states have been obtained by using the conventional procedures⁹⁻¹¹ and are listed in Table 1. The rms deviation for the band energies is obtained from the relation.

$$\sigma = \left(\frac{\sum \Delta_i^2}{N}\right)^{1/2}$$

where Δi is the difference in energy between the experimental and theoretical values, N is the number of states obtained in the present work. Table 1 shows that the rms deviation are found to be reasonably smaller and thus there exists a successful correlation between the experimental and calculated energy values. The relevent spectroscopic parameters namely Racah (E^1, E^2, E^3) , spin-orbit (ξ_{4f}) configurational interaction (α) which characterise the band energies are evaluated by solving the 4f³ energy matrices are given in Table 2. As the rms deviations (Table 1) for the band energies are found to be between ± 17 and ± 51 cm⁻¹, the computed parameters that are given in Table 2 are thus chosen as the best fit from the several trials made on the microcomputer. Table 2 also reveals that the following situation exists with regard to E^1 and E^2 values

$$E^1$$
, E^2 : EA > MA > IPA > BA > AA

On the other hand, the values of E^3 , ξ_{4f} and α are found to be at maximum in MA and the minimum in AA.

3.2 Band Intensities

The squared reduced matrix elements required for theoretical evaluation of band intensities have been evaluated for Nd^{3+} : Methyl alcohol and are presented in Table 3. The experimental and calculated band intensities of Nd^{3} ion in five alcohols are

lable I Measu	ired and ca	ilculated en	ergies (in c	cm ⁻) of the	e observed l	levels for N	10 ² (NO ₃)301	H ₂ U in vari	ious alcono	SIS.
Transition from ⁴ 1	Methyl	alcohol	Ethyl alı	cohol	(dorqop)	vi alcohol	Butyl alc	sohol	Amyl alc	loho
1,9/2	E_{expt}	E_{calc}	E_{expt}	E_{calc}	Eexpi	E_{calc}	Eexpi	E_{calc}	Eexm	E_{calc}
${}^{4}\mathrm{D}_{\mathbf{u},\mathbf{r}}$	28977	29037	28894	28960	28810	28872	28894	28880	28563	28647
$^{2}D_{3/2}$	22020	21987	22045	22013	21972	21930	21900	21900	21828	21807
4G.,,	19955	19854	19797	19764	19757	19831	19680	19678	19641	19615
${}^{4}G_{7/2}$	19393	19380	19375	19309	19337	19241	19225	19239	19189	19187
⁴ G ₁₀	17539	17520	17508	17466	17417	17417	17417	17426	17387	17285
$^{2}H_{11/2}^{2/2}$	16229	16255	16177	16219	16073	16137	16125	16116	16125	16129
⁴ F _{9/2}	14966	15060	14944	14997	14877	14951	14899	14923	14910	14910
${}^{4}\mathrm{F}_{7/2}$	13723	13706	13676	13651	13639	13623	13648	13616	13676	13638
${}^{4}F_{5/2}$	12671	12659	12623	12623	12623	12617	12639	12628	12671	12692
$4F_{3/2}$	11652	11657	11611	11635	11598	11621	11611	11637	11638	11631
rms deviation	+1	50	+1	42	+1	- 5 1	+1	17	+1	45

Inchale , NAMO V EU O Ľ ŕ 1 10. Å f + h. -11-5 -. Ň Tahla 1

Table 2 Values of Racah (E^1, E^2, E_3) , spin-orbit (ξ_{4f}) , configurational interaction (α), Judd-Ofelt (T_{λ}) , refractive index (*n*) and intensity (Ω_{λ}) Parameters for Nd(NO₃)₃6H₂O in various alcohols.

Parameter	Methyl alcohol	Ethyl alcohol	Isopropyl alcohol	Butyl alcohol	Amyl alcohol
<i>E</i> ¹	5032.17	5048.63	5013.23	4998.92	4917.04
E^2	27.92	28.08	27.84	27.37	26.30
<i>E</i> ³	502.65	500.88	498.72	498.90	490.84
Šar	912.62	900.93	894.70	882.34	888.92
α	5.917	5.134	3.75	2.74	-2.73
$T_{2} \times 10^{9}$	1.440	0.992	1.575	1.353	1.305
$T_{4} \times 10^{9}$	0.816	0.609	0.607	0.593	0.763
$T_{6} \times 10^{9}$	1.680	1.745	1.737	1.544	1.619
ทั่	1.338	1.369	1.380	1.403	1.406
$\Omega_{2} \times 10^{20}$	11.122	8.836	1.580	9.998	9.624
$\Omega_4^{2} \times 10^{20}$	6.307	5.425	4.561	4.382	5.632
$\Omega_6^{-} \times 10^{20}$	12.977	15.542	13.045	11.414	11.940

Table 3 Squared reduced matrix elements $(\psi J | U^{\lambda} | \psi' J')^2$ for the observed levels of Nd(NO₃)₃6H₂O: *Methyl alcohol.*

Transtion from ⁴ I _{9/2}	$ U^2 ^2$	$ U^{4} ^{2}$	$ U_{6} ^{2}$
⁴ D _{3/2}	0	0.19212	0.01633
$^{2}D_{3/2}^{3/2}$	0	0.01407	0.00002
⁴ G _{9/2}	0.00291	0.04127	0.02308
⁴ G _{2/2}	0.08737	0.23674	0.07886
4G √2	0.89547	0.41615	0.03459
$^{2}H_{11/2}$	0.00118	0.00198	0.02008
⁴ F _{0.2}	0.00045	0.00680	0.05793
⁴ F _{7/2}	0.00167	0.03697	0.42825
⁴ F _{3/2}	0.00094	0.23950	0.39484
${}^{4}\mathrm{F}_{3/2}^{3/2}$	0	0.22989	0.05223

listed in Table 4. Table 4 reveals that the hypersensitive transition $({}^{4}I_{9/2} \rightarrow {}^{4}G_{5/2})$ has the maximum intensity which follows the selection rule

$$\Delta J \leq 2, \Delta L \leq 2 \text{ and } \Delta S = 0$$

The intensity of this transition is well monitered by T_2 and $||U^2||^2$ parameters. The other two parameters namely T_4 and T_6 will be supplemental to T_2 parameter in explaining the variations in the intensity values of the hypersensitive transition. With regard to the intensities of other remaining bands, all the three (T_{λ}) parameters will influence the changes. The dependance of f_{cal} (hypersensitive transition) on the Judd-Ofelt T_2 parameter is shown below for the complexes under study.

Parameters	МА	EA	IPA	BA	AA
f_{cal} (× 10 ⁶)	29.597	21.057	31.577	26.335	26.821
$T_2 (\times 10^9)$	1.440	0.992	1.675	1.353	1.305

Downloaded At: 08:33 28 January 2011

alcohols.										
Transition	Methyl a	lcohol	Ethyl alc	loho	Isopropy	l alcohol	Butyl alc	loho:	Amyl alc	lohol
19/2 mont	fexpi	fcate	fexpt	fcate	fexpt	fcate	fexpi	fcate	fexpi	fcalc
${}^{4}D_{u_{2}}$	7.096	5.341	6.908	4.206	7.344	4.179	6.034	4.021	7.206	4.947
${}^{2}D_{3/2}$	0.318	0.253	0.355	0.190	0.233	0.188	0.289	0.185	0.372	0.235
${}^{4}D_{ai}$	ļ	1.530	I	1.352	1	1.383		1.261	Ì	1.428
${}^{4}G_{712}$	11.166	8.759	9.404	7.143	9.378	8.260	8.637	7.315	10.839	8.108
⁴ G ⁽¹⁾	29.385	29.597	20.832	21.057	31.479	31.577	26.218	26.335	26.578	26.821
${}^{2}H_{11/2}$	0.105	0.601	0.064	0.605	0.122	0.611	0.113	0.544	0.247	0.753
${}^{4}\mathrm{F}_{9/2}$	0.540	1.549	0.574	1.579	0.239	1.569	0.547	1.402	0.877	1.484
$4F_{1/2}$	10.470	10.332	11.852	10.555	11.062	10.491	9.601	0.360	10.698	9.900
${}^{4}\mathrm{F}_{5/2}^{$	10.793	10.901	9.155	10.555	10.095	10.514	9.356	9.521	9.534	10.434
${}^{4}\mathrm{F}_{3/2}$	1.492	3.210	1.662	2.685	1.389	2.671	1.306	2.520	1.613	3.027

Table 4 Measured and computed spectral intensities $(f \times 10^6)$ of the observed levels for Nd(NO₃)₃6H₂O in various

From this table it is observed that the hypersensitive level (${}^{4}G_{5/2}$) intensities are found to be reasonably high in isopropyl alcohol (IPA) and much smaller in ethyl alcohol (EA). From Table 2 it is noted that Judd-Ofelt (T_{λ}) parameters are found to be in the following order for the five Nd³⁺ complexes.

$$T_6 > T_2 > T_4$$

Similar observations have earlier been made for Nd^{3+} in inorganic hosts too^{9-10} . Since the change of environments around the rare earth ion influence the variation in band intensities and a little amount of shift in the energy level structure, the values of eigenvectors of the states remain more or less the same. As a result of this there will not be much change in the values of $\|U^{\lambda}\|^2$ of Nd^{3+} complexes.

In Table 4, there are certain disagreements exist between the measured and theoretical intensities. The reasons, for the above inconsistant correlations are explained as follows. The calculated 'f' is more dependent on Judd-Ofelt (T_{λ}) and $\|U^{\lambda}\|^2$ values as explained earlier⁹. As these $\|U_{\lambda}\|^2$ values are very lightly influenced (in case of certain states) by the environments, there could be a situation for an unsatisfactory agreement between the theory and experimental values. The band intensity of ${}^4G_{9/2}$ could not be measured experimentally in all the hosts, however the theoretical values are evaluated and presented in Table 3.

3.3 Radiative Lifetimes (τ_R)

The lifetimes of the fluorescent states have been determined through the theoretical approach by using the Judd-Ofelt parameters (Table 2). For Nd^{3+} , there are about eight states identified as electronic excited states. Of them, one state is believed to be a radiative transition and the other seven are called non-radiative transitions,¹¹ they are as follows:

Radiative transition:
$${}^{4}F_{3/2}$$

Non-radiative transitions: ${}^{4}F_{5/2}$, ${}^{4}F_{9/2}$,
 ${}^{2}H_{11/2}$,
 ${}^{4}G_{5/2}$, ${}^{4}G_{7/2}$, ${}^{4}G_{9/2}$
 ${}^{4}D_{3/2}$

For the above eight fluorescing states and their next power lying follow up states, the values of squared reduced matrix elements $||U^{\lambda}||^2$ for Nd³⁺: methyl alcohol have been computed and listed in Table 5. By using the data given in Tables 2 and 5, the computed numerical values of electric dipole (S_{ed}), magnetic dipoles (S_{md}), transition probability (A) and relaxation rate (A_T) are presented in Table 6. The reciprocal value of A_T gives us the lifetime ($\tau_R \text{ in } \mu \text{s}$) of the fluorescing state. The theoretically predicted τ_R values for the eight excited states of five Nd³⁺ complexes are summarised in Table 7. From this table, it is noted that the fluorescing state ${}^2\text{H}_{11/2}$ has the maximum and the minimum for ${}^4\text{D}_{3/2}$. The following is the order in which the lifetime values τ_R (in μ s) vary from host to host.

$$2H_{11/2} > {}^{4}F_{3/2} > {}^{4}F_{9/2} > {}^{4}F_{5/2} > {}^{4}G_{9/2} > {}^{4}G_{7/2} > {}^{4}G_{5/2} > {}^{4}D_{3/2}$$

Transitions	$\ U^2\ ^2$	$\ U^4\ ^2$	$ U^6 ^2$	Transitions	$ U^2 ^2$	$\ U^4\ ^2$	$\ U^6\ ^2$
${}^{4}F_{2/2} \rightarrow {}^{4}I_{1/6/2}$	0	0	0.03049	${}^{4}G_{7/2} \rightarrow {}^{2}H_{9/2}$	0.00956	0.00700	0.04899
⁴ I _{12/2}	0	0	0.20473	4F _{3/2}	0.16289	0.11967	0
⁴ I _{11/2}	0	0.14166	0.41294	⁴ I _{15/2}	0	0.02599	0.01255
⁴ I _{9/2}	0	0.22989	0.05223	4I _{13/2}	0	0.25536	0.08103
-9/2				4I _{11/3}	0.86846	0.15737	0.00387
${}^{4}F_{s/2} \rightarrow {}^{2}H_{0/2}$	0.00696	0.02815	0.00186	4I _{9/2}	0.08737	0.23674	0.07886
⁴ F _{1/2}	0.05127	0.05062	0				
4 I 1 5 12	0	0	0.23155	${}^{4}G_{9/2} \rightarrow {}^{2}K_{13/2}$	0.02137	0.08858	0.14144
⁴ I	0	0.17914	0.40013	⁴ G _{7/2}	0.00005	0.10380	0.05613
⁴ I	0	0.16911	0.03630	⁴ G _{5/2}	0.00021	0.04579	0.23214
⁴ I _{0/2}	0.00094	0.23950	0.39484	${}^{2}G_{7/2}^{3/2}$	0.04231	0.01012	0.08025
-9/2				$^{2}H_{11/2}$	0.01189	0.00854	0.37918
${}^{4}F_{\alpha\nu} \rightarrow {}^{4}F_{\nu\nu}$	0.03397	0.11864	0.02914	${}^{4}F_{9/2}$	0.15820	0.03479	0.21691
⁴ S ₁₁₂	0	0.00048	0.00192	${}^{4}\mathrm{F}_{7/2}^{7/2}$	0.23731	0.03440	0.14919
4F.0	0.00540	0.04381	0.07785	4S 3/2	0	0.16519	0.00042
$^{2}H_{0,2}$	0.06497	0.00061	0.13785	⁴ F _{5/2}	0.10458	0.10158	0.00396
⁴ F ₂	0	0.01266	0.10688	${}^{2}H_{9/2}$	0.00067	0.00079	0.15416
41.50	õ	0.54159	0.46011	${}^{4}F_{1/2}^{3/2}$	0	0.02209	0.04978
41.32	0.00935	0.20948	0.52360	⁴ I, 5/2	0	0.05302	0.26399
4I	0.00055	0.02968	0.38272	⁴ I _{11/2}	0.61658	0.31090	0.04945
4 I	0.00045	0.00680	0.05793	4I.1.2	0.09851	0.26325	0.01753
*9/2	0.00015	0.00000	0.05775	4I _{0/2}	0.00291	0.04127	0.02308
$^{2}H_{H} \rightarrow ^{4}F_{H}$	0.07066	0.02790	0.06529	-9/2			
⁴ E ₋₁₂	0.00252	0.00006	017148	${}^{4}D_{3/2} \rightarrow {}^{2}P_{3/2}$	0.04796	0	0
4S-112	0	0.03627	0.00012	² D ₄	0.01531	0.00256	Ō
⁴ E	õ	0.00012	0.02207	² P2	0.00038	0	õ
² H	0.07266	0.00615	0.02207	⁴ G	0	0.00262	0 20569
4E	0.07200	0.00204	0.00002	² D	003459	0.00202	0
4 I 3/2	0 09709	0.05203	0.00041	² K	0	õ	0.00035
4L	0.00280	0.03203	0.00021	${}^{2}G_{aut}$	õ	0 00257	0.05196
4I	0.00230	0.00021	0.00550	² P	0 04796	0.00257	0.05170
4L	0.00427	0.00198	0.000008	${}^{2}D$	0.01531	0.00256	Õ
1 9/2	0.00110	0.00170	0.02000	² P	0.00038	0	Õ
${}^{4}G \dots \rightarrow {}^{2}G \dots$	0.00688	0 17259	0.00003	⁴ G	0	0 00262	0 20569
² H	0	0.00045	0.01163	${}^{2}D_{11/2}$	0 03459	0	0
4E	0,00009	0.01068	0.07645	² K	0	õ	0.00035
4F	0.02191	0.05997	017791	${}^{2}G_{ava}$	õ	0.00257	0.05196
4S	0.00467	0 19857	0	⁴ G	õ	0.00233	0.07355
4F	0.26596	0.13885	Ő	² K	õ	0.00255	0.00100
² H	0.00422	0.00319	0 03846	4G	0 24665	0.00343	0.00100
4F.	0.47207	0.01708	0.05040	4G	0.17008	0.00069	õ
4 I	0.47207	0	0 00442	${}^{2}G_{-1}$	015151	0.01244	õ
4I	õ	0 03470	0.04739	² H	0	0.04085	001035
4I	õ	0 29034	0.09678	$^{4}\text{D}_{\text{exp}} \rightarrow {}^{4}\text{F}_{\text{exp}}$	õ	0.17805	0.00248
4L.	0 89547	041615	0.03349	4Fa.	0 24 549	0.06892	0.00240
•9/2	0.07517	0.11015	0.05547	4S	015642	0	õ
⁴ G→ ⁴ G↔	0.00419	0 38400	0.07589	4F	0.05742	0 19898	õ
$^{2}G_{2}$	0.00063	0.01126	0.02235	${}^{2}H_{0}^{3/2}$	0	0.02015	0.00605
² H	0	0.02194	0.04375	4F	0.14720	0	0
⁴ F	0.03661	0.08504	0.28835	4 L	0	ŏ	0.00821
4F	0.26678	0 10369	0.00033	4L	õ	õ	0.02695
4S	0.00042	0.16535	0	41	õ	0 27543	0.00689
4F.	041940	0.00921	0 14311	4I	õ	0 19212	0.01633
• 5/2	0.41240	5.00721	0.14011	*9/2	v	0.17212	0.01055

Table 5 Squared reduced matrix elements $(\psi J || U^{\lambda} || \psi' J')^2$ for the fluorescent levels $({}^4F_{3/2, 5/2, 9/2}, {}^2H_{11/2}, {}^4G_{5/2, 7/2, 9/2} \& {}^4D_{3/2})$ and other low-lying levels of Nd(NO₃)₃6H₂O: Methyl alcohol.

Transitions	Methy	1 alcohol	.1/2 · J 5/2,7	2.9/2 C	U 3/2) U	100 (C C C C C C C C C C C C C C C C C C	Isopro	pyl alcoh	alconois. ol	Butyl c	alcohol		Amyl c	ilcohol	
217 217	 S _{ed}	Smd	 V	Sed	Smd	V	Sed	Smd	V	Sed	Smd	۲	Sed	Smd	۲
		= E	((2)			(3)			(4)			(5)	
$^{4}\mathrm{F}_{3/2} \rightarrow ^{4}\mathrm{I}_{15/2}$	39	0	23.90	47	0	31.57	39	0	27.58	34	0	26.82	36	0	27.51
4I _{13/2} 41	255	00	435.81	318	00	564.78 7600 30	267 603	0 0	488.35 7743 00	233	00	462.88 2116 50	244	00	479.89
$4_{10/2}^{11/2}$	212	0	1258.80	205	00	1292.80	172	00	1108.40	160	0	1084.70	161	0	1303.70
		A_T	3841		A_T	4498		A_T	3868		A_T	3690		A_T	4082
${}^{4}\mathrm{F}_{z,n} \rightarrow {}^{2}\mathrm{H}_{n,n}$	27	C	0	24	0	C	24	0	C	21	0	C	24	0	c
$+ \frac{1}{4} \mathbf{F}_{4/2}$	88	33.98	0.41	72	33.89	0.96	87	33.89	0.41	73	34.02	0.36	1	33.36	0.39
4I 15/2	300	0	209.14	359	0	272.25	302	0	236.49	264	0	226.15	276	0	234.56
⁴ I 13/2	632	0	1033.60	719	0	1261.10	603	0	1087.20	535	0	1034.20	578	0	1116.70
⁴ I _{11/2}	153	0	479.33	148	0	491.02	124	0	421.73	115	0	414.99	138	0	499.76
⁴ I _{9/2}	664	0	3426.90	744	0	4056.90	625	0	5211.20	556	0	3248.90	607	0	3574.30
		A_T	5149		A_T	6081		A_T	6957		A_T	4924		A_T	5425
${}^{4}\mathrm{F}_{\mathrm{Q}^{\prime}\mathrm{J}} \rightarrow {}^{4}\mathrm{F}_{\mathrm{T}^{\prime}\mathrm{J}}$	150	28.31	0.50	139	28.31	0.53	134	28.43	0.51	119	28.27	0.46	134	28.71	0.52
$+S_{3/2}$	~	0	0.01	ę	0	0.04	ы	0	0.01	7	0	0.01	7	0	0.01
${}^{4}\mathrm{F}_{5/2}$	134	0	2.21	149	0	2.54	128	0	2.16	113	0	1.94	122	0	2.16
² H ^{9/2}	251	16.23	7.87	271	16.54	7.87	261	16.23	8.34	222	16.16	7.00	227	16.03	7.36
${}^{4}F_{3/2}$	146	0	7.97	172	0	9.66	145	0	8.07	127	0	7.15	134	0	7.83
41 41	9.58 7.79	0 0	943.32 1506 70	1008	~ ~	1036.92	646 1007		936.29	79/	0 0	904.05	408 402	0 0	1013.80
41	270	015	0/ 0601 1694 00	(11)	010	2125.60	213	0 14	1815 50	450	014	1675.60	7C/	014	1778 00
$4I_{9/2}$	61	0.12	401.54	94	0.09	497.00	62	0.09	425.39	69	0.09	390.40	73	0.0	416.89
		A_{T}	4655		A_T	5669		A_{T}	4864		A_{T}	4551		A_T	4119

24

0.08	2.18	0.24	0.91	10.89	0.15	153.98	39.99	40.87	142.85	392	0.02	0.26	4.86	41.43	19.65	103.63	20.70	263.15	22.58	540.42	3016.80	17401.00	21434	(continued)
3.67	0	0	0	15.42	0	0	1.01	0.28	0	A_{T}	10.27	0	0	0.21	0	0.01	0	0.02	0	0	0	0	A_T	
161	207	20	26	191	0	123	16	10	26		103	14	97	260	116	334	51	463	9	76	279	1137		
0.08	2.07	0.20	0.86	10.52	0.12	150.47	36.05	40.01	134.64	375	0.05	0.32	5.52	43.88	18.12	110.72	21.43	289.91	22.51	508.10	2633.40	17407.00	21060	
3.72	0	0	0	15.33	0	0	0.98	0.28	0	A_T	8.82	0	0	0.18	0	0.01	0	0.01	0	0	0	0	A_T	
157	198	16	25	187	4	120	14	10	24		82	13	92	244	91	326	4 9	479	S	69	237	1117		
0.07	2.31	0.20	0.95	11.44	0.13	170.55	38.15	44.76	147.20	415	0.38	0.33	5.75	47.26	18.04	127.58	23.82	347.56	23.88	533.48	2705.70	20154.00	23987	
3.62	0	0	0	15.25	0	0	1.03	0.28	0	A_T	8.58	0	0	0.20	0	0.01	0	0.02	0	0	0	0	A_{T}	
186	226	16	28	222	7	146	16	12	28		534	15	<u>10</u>	279	96	397	56	601	9	77	258	1361		
0.10	2.90	0.26	1.18	12.27	0.16	131.88	38.55	43.94	170.24	401	0.07	0.37	6.73	53.59	21.03	98.91	26.65	244.94	27.83	62.33	3166.70	15610.00	19880	
3.86	0	0	0	15.15	0	0	<u>1</u> .8	0.29	0	A_T	8.67	0	0	0.20	0	0.01	0	0.02	0	0	0	0	A_T	
175	268	19	34	220	7	114	18	12	33		66	18	124	319	111	310	65	426	9	92	308	1070		
0.09	2.23	2.90	0.92	11.50	0.14	150.35	359.87	38.76	137.98	704	0.08	0.30	5.31	44.99	23.22	115.38	22.37	350.97	21.62	526.37	2990.02	17696.00	22069	
3.34	0	0	0	15.22	0	0	1.06	0.29	0	A_T	8.59	0	0	0.21	0	0.02	0	0.02	0	0	0	0	A_T	
180	225	23	28	212	0	141	182	12	28		116	15	106	285	130	383	56	641	9	83	309	1303		
${}^{2}\text{H}_{11/2} \rightarrow {}^{4}\text{F}_{9/2}$	${}^{4}F_{7/2}$	${}^{4}S_{3/2}$	${}^{4}F_{5/2}$	² H ^{9/2}	${}^{4}F_{3/2}$	⁴ I 15/2	⁴ I _{13/2}	⁴ I _{11/2}	4I _{9/2}		${}^4G_{5/2} \rightarrow {}^2G_{7/2}$	² H ^{11/2}	${}^{4}F_{9/2}$	${}^{4}\mathrm{F}_{7/2}$	${}^{4}S_{3/2}$	${}^{4}F_{5/2}$	${}^{2}H_{9/2}$	${}^{4}F_{15/2}$	$^{4}I_{15/2}$	⁴ I 13/2	4l	4I _{9/2}		

25

2011
January
28
08:33
At:
Downloaded

tion ratio $(A_T \text{ in sec}^{-1})$ for the	
nd relaxa	
) ar	
-2	(
in Se	nuec
٤	onti
ities	ls. (c
abil	oho
rob	s alc
d uo	ious
nsiti	ı var
trai	Щ. О
cths,	5H ₂ (
reng) ³) ³ (
nest	ž
le li	PZ
dipo	²) of
²²) (D3//
< 10	& 8
Ĵ	2.9/2
ic (S	12.71
gnet	đ,
mag	1/2
) ²²),	² H,
×	9/2.
Sed	2, 5/2.
ric (4F 3/:
elect	els (
The	t lev
9	scent
Table	floures

Transitions SU I S'L'F	Methy	il alcohol		Ethyl	alcohol		Isopro	pyl alcoh	lo	Butyl	alcohol		Amyl	alcohol	
	Sed	S _{md}	¥	Sed	S _{md}	V	Sed	S _{md}	¥	Sed	Smd	¥	Sed	Smd	¥
		D			3			(3)			(4)			(2)	
⁴ G _{2.2} → ⁴ G _{2.2}	345	38.64	3.44	330	38.59	3.39	279	38.69	2.92	259	38.46	2.78	310	36.98	3.63
$\frac{2}{2}G_{212}$	36	0.31	0.86	41	0.32	1.00	35	0.32	0.86	31	0.34	0.75	33	0.37	0.70
² H ¹¹⁷	10	0	6.50	64	0	7.61	67	0	6.63	59	0	6.24	2	0	6.24
${}^{4}F_{a,2}$	468	0.01	74.56	526	0.01	88.67	461	0.01	78.40	403	0.01	72.88	392	0.01	66.07
${}^{4}F_{712}$	363	0.79	123.40	292	0.65	104.93	383	0.64	138.04	312	0.63	117.95	315	0.76	113.23
⁴ S _{3/2}	104	0	38.77	90	0	34.94	75	0	29.31	72	0	29.39	93	0	34.89
${}^{4}F_{5/2}$	658	0.34	357.36	598	0.33	341.38	647	0.33	370.63	423	0.33	253.90	579	0.41	334.86
² H ^{0/2}	78	0.13	62.69	88	0.13	60.94	79	0.13	55.52	68	0.12	49.55	71	0.10	50.06
${}^{4}\mathrm{F}_{3/2}$	257	0	220.97	209	0	185.92	260	0	234.46	216	0	202.29	225	0	205.28
41 _{15/2}	32	0	139.17	33	0	152.97	28	0	130.93	25	0	127.59	29	0	143.68
41 _{13/2}	266	0	1786	264	0	1886.80	222	0	1611.5	204	0	1573.9	240	0	1822.00
41 11/2	1070	0	10532.00	858	0	8945.30	1169	0	12365.00	941	0	10505.00	929	0	10245.00
${}^{4}I_{9/2}$	348	0	4735.20	328	0	4699.40	320	0	4656.10	281	0	4282.50	311	0	4712.90
		A_T	18018		A_T	16513		A_T	19680		A_T	17224		A_{T}	17732
								,							
${}^{4}G_{9/2} \rightarrow {}^{2}K_{13/2}$	263	0	0.16	286	0	0.16	251	0	0.18	221	0	0.18	239	0	0.42
${}^{4}G_{7/2}$	138	16.32	0.01	143	14.01	0.01	120	13.81	0.01	109	13.88	0.01	125	15.84	0.02
${}^{4}G_{5/2}$	330	0	4.45	385	0	5.29	323	0	4.39	285	0	3.92	303	0	5.02
${}^{2}G_{7/2}$	157	24.36	5.57	167	24.36	6.01	162	24.32	5.87	138	24.49	5.04	142	25.80	4.96
$^{2}H_{11/2}$	509	0.20	51.32	602	0.20	62.46	512	0.21	54.71	447	0.19	50.37	467	0.08	51.44
${}^{4}F_{9/2}$	479	6.81	80.61	495	6.74	87.55	497	6.77	88.45	421	6.52	79.32	430	5.85	79.18
${}^{4}\mathrm{F}_{7/2}$	479	0.45	160.10	460	0.45	161.21	508	0.46	178.52	422	0.47	154.92	425	0.39	153.93
${}^{4}S_{3/2}$	5	0	37.88	8	0	34.06	75	0	28.43	72	0	28.45	93	0	35.10
${}^{4}F_{5/2}$	185	0	96.15	153	0	83.35	183	0	99.40	153	0	87.08	162	0	9.15
$^{2}H_{9/2}$	201	1.54	127.78	240	1.54	156.98	202	1.54	134.09	176	1.54	120.82	185	1.56	125.81
${}^{4}\mathrm{F}_{3/2}$	78	0	12.73	68	0	74.34	75	0	62.50	99	0	57.53	71	0	62.25
⁴ I _{15/2}	376	0	140.22	439	0	1745.10	368	0	1490.50	323	0	1396.20	345	0	1479.00
⁴ I _{13/2}	946	0	5488.10	790	0	4864.60	982	0	6137.20	808	0	5361.10	827	0	5463.70
${}^{4}I_{11/2}$	298	0.64	2516.00	257	0.04	2290.90	266	0.04	2410.90	233	0.04	2226.50	264	0.04	2513.40
⁴ I _{9/2}	59	0.01	684.10	60	0.01	740.08	52	0.01	647.99	47	0.01	611.59	53	0.01	868.37
		A_T	9405		A_T	10312		A_T	11343		A_T	10178		A_T	10943

3.01 10.49 0.60 358.65	61.36 0.97 131.32 300.17 5.48	927.54 1030.50 1074.90 351.05 351.05	4121.70 4121.70 2290.20 3009.10 360.85 3085.10	47778 2129.8 13678.00 13147.00 47778
0 0.10 0.37 0	0.0000		0.0000	A_r
46 16 1 247	- 33 63 - 33 89 63 - 33	239 164 35 35	150 150 167 18 18 141	32 32 163 127
3.96 12.45 0.62 362.84	67.90 0.93 135.93 306.21 5 2 2	1005.60 1993.50 311.52 302.71	772.71 4328.90 2518.30 2711.50 318.23 3323.5	431.37 2092.9 11024.00 10798.00 43083
0 0.07 0.33	0 700000	00000	0.000	A 0000
47 16 1 235	- 8 60 - 34	248 170 29 29	275 156 144 147 15	30 30 102
4.41 15.16 0.64 387.39	81.60 0.99 146.38 332.00 5.64	1202.40 1314.90 1417.90 319.75	5089.40 5089.40 3021.60 331.38 331.38 3396.4	2261.80 2261.80 10955.00 10892.00 46220
0 0.06 0.31	9000000 000000	00000	0.0000	A 0000
60 20 269	- 43 97 68 - 1	311 214 32 32 84	340 196 112 185	35 35 134 108
2.96 10.94 0.51 453.01	55.96 2.34 171.07 388.85 6.48	834.96 913.29 372.68 372.68	3761.90 3761.90 2105.90 388.29 388.29 2779.20	2652.10 2652.10 12834.00 12780.00 46095
0 0.06 0.31 0	0 0 0 0 0	00000	0.0000	A_r
42 15 321	30 115 115	219 150 38 38	254 138 130 130	41 160 129
3.55 12.85 0.57 347.39	67.96 0.88 132.92 303.10 5.11	1089.70 1079.20 1180.90 359.82 1242.82	4396.10 4396.10 2494.70 3149.60 372.09 3300.80 483.55	2076.30 13774.00 13237.00 49110
0 0.07 0.31 0	90000000000000000000000000000000000000	00000	0.0100	A_T
53 18 268 268	- 96 - 38 96 - 38	276 189 39 39	316 173 163 20 163 20 20	34 182 142
${}^{2}D_{3/2} \rightarrow {}^{2}P_{3/2}$ ${}^{2}D_{5/2}$ ${}^{2}P_{1/2}$ ${}^{4}G_{11/2}$	² G ³ 2 2G ^{15/2} 4G ^{9/2} K ^{9/2}	4G ^{7/2} 4G ^{7/2} 2G ^{7/2} 2H ^{11/2}	4 F 9/2 4 F 3/2 4 F 3/2 4 F 3/2 2 H 5/2 4 F 3/2	4 15/2 4 1 3/2 4 1 11/2 4 9/2

Downloaded At: 08:33 28 January 2011

Fluorescent levels	Methyl alcohol	Ethyl alcohol	Isopropyl alcohol	Butyl alcohol	Amyl alcohol
⁴ F ₃ ,	260.3	222.3	258.5	270.9	244.9
⁴ F ₅ ,	194. 1	164.4	143.7	203.1	184.3
⁴ F ₀ ,	214.8	176.4	205.5	219.7	203.2
$^{2}H_{11,2}$	1418.8	2490.5	2404.8	2666.2	2549.8
⁴ G,	45.3	50.3	41.6	47.4	46.6
⁴ G ₂ ,	55.4	60.5	50.8	58.1	56.3
⁴ G ₀ ⁷	106.3	96.9	88.1	98.2	91.4
⁴ D _{3,2}	20.5	21.6	22.1	23.2	20.9

Table 7 The radiative lifetimes (τ_R) in μ s for the fluorescent level $({}^4F_{3,2,5,2,9,2}, {}^2H_{11,2}, {}^4G_{5,2,7/2,9/2} \& {}^4D_{3/2})$ of Nd(NO₃)₃6H₂O in various alcohols.

The following situation has also been noted from Table 7:

$$\tau_{R} (\mu s): {}^{4}F_{3/2}: BA > MA > IPA > AA > EA$$

$${}^{4}F_{5/2}: BA > MA > AA > EA > IPA$$

$${}^{4}F_{9/2}: BA > MA > IPA > AA > EA > IPA$$

$${}^{2}H_{11/2}: BA > AA > EA > IPA > AA > EA$$

$${}^{2}H_{11/2}: BA > AA > EA > IPA > MA$$

$${}^{4}G_{5/2}: EA > BA > AA > MA > IPA$$

$${}^{7}G_{7/2}: EA > BA > AA > MA > IPA$$

$${}^{4}G_{9/2}: MA > BA > EA > AA > IPA$$

$${}^{4}D_{3/2}: BA > IPA > EA > AA > MA$$

3.4 Second Derivative Spectra

The following four electronic states which could not be recorded in the normal spectra of Nd³⁺ complexes, are now found to exist in the second derivative spectra. The measured energies of these four new states are presented in Table 7.

$${}^{4}I_{9/2} \rightarrow {}^{4}S_{3/2}, \, {}^{2}G_{7/2}, \, {}^{2}P_{1/2} \text{ and } {}^{4}D_{1/2}$$

Thus the second derivative spectra of these Nd^{3+} complexes have revealed altogether fourteen energy states.

Table 8 The measured energies of certain bands revealed by the second derivative spectra, which have not been noticed in the normal spectra of $Nd(NO_3)_36H_2O$ in various alcohols.

Transitions from ⁴ I _{9,2}	Methyl alcohol	Ethyl alcohol	Isopropyl alcohol	Butyl alcohol	Amyl alcohol
⁴ S ₁ ,	13620	13620	13583	13546	13620
$^{2}G_{7}$,	21361	21316	21453	21316	21361
$^{2}P_{1}$	23578	23467	23522	23467	23412
$^{4}D_{1/2}$	29403	29317	29146	29274	29146

Acknowledgements

Our heartfelt gratitude is expressed to our teacher Professor S. V. J. Lakshman for providing much encouragement and help in this work.

References

- 1. A. Seminara, Inorg. Chim. Acta, 95, 70 (1984).
- 2. G. R. Choppin and Q. Liu, J. Less-Com. Met. 94, 406 (1983).
- 3. J. G. Bunzli, Inorg. Chim. Acta, 95, 105 (1984).
- 4. W. Urland, J. Less-Com. Met., 93, 431 (1983).
- 5. U. G. Shevchu, Zh. Neorg, Khim., 28, 2657 (1983).
- 6. G. Vicentini, J. Inorg. Nucl. Chem., 34, 669 (1972).
- 7. G. Vicentini and F. G. Noble, J. Inorg. Nucl. Chem., 41, 1487 (1979).
- 8. G. Vicentini and L. C. Machodo, Rev. Latin. Amer. Quim., 16, 35 (1985).
- 9. S. V. J. Lakshman and S. Buddhuda, Acta. Phys. Hung., 54, 231 (1983).
- 10. V. Ramesh Babu, S. V. J. Lakshman and S. Buddhudu, Bull. Pure and Appl. Sci., 4D(1 & 2), 33 (1985).
- 11. W. T. Carnall, H. M. Crosswhite and H. Crosswhite, Energy level structure and transition probabilities of trivalent lanthanides in LaF₃ (Argonne National Laboratories, Argonne, Illinois, 1978).